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Evolution equations and conservation laws are derived for a quite general layered 
quasi-geostrophic model : with arbitrary thickness and stratification structure and 
with either a free or a rigid (including the possibility of topography) boundary 
condition, at the top and bottom. The system is shown to be Hamiltonian, and 
Arnol’d stability conditions are derived, in the sense of both the first and second 
theorem, i.c. for pscudowestward and pseudoeastward basic flows, respectively, and 
for arbitrary perturbations of potential vorticity and Kelvin circulations. 

Two examples of parallel basic flow in a channel are analysed: the sine profile in 
the so-called equivalent barotropic model (one layer with a free boundary) and Phillips’ 
problem (uniform flow in each of two layers with rigid boundaries). Using the second 
theorem with the optimum combination of pseudoenergy and pseudomomentum it  
is shown that, in both cases, the basic state is nonlinearly stable if the channel width 
L is small enough, namely, AL c R and 2 ( f , L / ~ ) ~  < g’(H,H,)i ,  respectively. (In the 
first problem, A is thc wavenumber of the sine profile; in the second one, g‘ is 
the reduccd gravity, II ,  and H ,  are the layer thicknesses, and fo is the Coriolis 
parameter). The stability condition of either problem is found to  be also a necessary 
one: as soon as it is violated a grave mode becomes unstable. It is shown explicitly 
that the second variation of the pseudoenergy and pseudomomentum of a growing 
(decaying) normal mode is identically zero, defining the direction of the unstable 
(stable) manifold. 

1. Introduction 
The method of Arnol’d (1965, 1966) is used to derive sufficient stability conditions 

of a hydrodynamical problem on the basis of its conservation laws. Although not 
indispensable for such a purpose, the Hamiltonian structure of the fully nonlinear 
system, if established, is very useful because it clearly spells out the relationship 
between symmetries and integrals of motion (Shepherd 1990). Two types of stability 
are usually studied: formal -which refers to the existence of an integral of motion 
A Y  with a local extremum in phase space - and nonlinear - related to  the existence 
of a norm of the perturbation, proved to be bounded by a multiple of its initial value 
(Holm et al. 1985; McIntyre & Shepherd 1987). 

The orthodox application of Arnol’d’s method can only be done for steady basic 
states of quasi-geostrophic models (QGM); in this case, A 9  is the pseudoenergy 
A(& + e0) ; if the basic state is also parallel, then the most useful Lyapunov functional 
is an arbitrary combination of the pseudoenergy and the pseudomomentum 
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A ( A  +W1), say, AY:= A(&-ccA +%?n-a%?l). Arnol’d’s first (second) theorem cor- 
responds to  Y being a minimum (maximum) at the basic state, i.e. 6 9  = 0 and 
S2Y > 0 (a2Y < 0). (The notation used is standard ~ but ncvertheless reviewed 
below: e.g. A, 6 and a2 denote the total, first and second variations of a functional 
from its value at  the basic state, respectively.) 

Both the Hamiltonian formalism and Arnol’d stability conditions (formal and 
nonlinear, first and second theorem, and using both pseudoenergy and pseudo- 
momentum) have been worked out for the continuously stratified QGM (Holm 
1986; Swaters 1986; McIntyre & Shepherd 1987; Shepherd 1989); in all these papers, 
the top and bottom boundary are rigid, and might be non-isopycnal (except for the 
published proof of Arnol’d’s second theorem). In  contrast, for a QGM with several 
homogeneous layers, only Arnol’d’s first theorem has been derived (for the case of 
equal thicknesses and buoyancy jumps across interfaces, and rigid boundaries), using 
the Hamiltonian structure of the system (Holm et al. 1985). Benzi et al. (1982), on the 
other hand, derived the first and second theorem for the so-called equivalent 
barotropic QGM, which is no more than a one-layer system with a free boundary (top 
and/or bottom), in an infinite domain. 

The first goal of this paper is to complete the treatment of the case with stepped 
density stratification. Section 2 presents the Hamiltonian structure and conservation 
laws of a quite general layered QGM, with arbitrary buoyancy jumps and layer 
thicknesses, and for both rigid (like Holm et al. 1985) and free (like Benzi et al. 1982) 
top and bottom boundary conditions (the first possibility might include topography). 
Arnol’d first and second theorems for this model are derived in $3.  

Sufficient stability conditions are, of course, equivalent to necessary instability 
criteria. An unstable basic state must violate all possible stability conditions, e.g. in 
the case of a steady and parallel basic flow, S2(6-uA +Vn-aq1) (=  a2Y) must be 
sign indefinite for any a. Moreover, A Y  = 0 is the way of escape from the basic state 
in phase space, i.e. 62Y = 0 indicates the original direction of the unstable and the 
stable manifolds. Two particular examples of unstable flows are discussed: the sine 
profile in the equivalent barotropic model (one layer with free surface) in $4, and 
Phillips’ problem (two layers with rigid top and bottom boundaries) in $5. 

The general conclusions of this work are compared, in $6, with those of primitive 
equations models (such as shallow-water equations) and there is a discussion of which 
results are common and which are peculiar, and why. Finally, mathematical details 
of the proof of Arnol’d’s second theorem and of the normal modes of Phillips’ 
problem are left for Appendices A and B, respectively. 

2. Model equations and conservation laws 
In this section, I will first describe a quite general layered quasi-geostrophic 

system, including the possibility of an arbitrarily shaped domain, the rigid or free top 
and bottom boundaries. (I am using the Boussinesq approximation, but the 
equations can be easily changed for their application to the atmosphere.) Next, 1 will 
present the Hamiltonian and Poisson bracket which give the evolution equations. 
Finally, I will derive the form of the momenta, by making them the generators of the 
spatial transformations. For a comparison of laycred and ‘level ’ models, see 
Pedlosky (1979, $6.18). 

Consider a system with N homogeneous layers, whose thicknesses a t  rest (not 
necessarily equal) are Hi, with j = 1:. . . , N ,  from top to bottom. In each layer a 
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streamfunction $j(x, y, t )  is defined, which determines not only the velocity 
components along the x (eastward) and y (northward) directions by 

ui=-ay$i, vj=ax+i ( j =  1 ,..., N ) ,  (2.1) 

but also the vertical displacement Q of the interface between the j t h  and (j+ 1)th 
layers, by the hydrostatic balance 

gjCj =fo($j+I-$j) ( j =  19***,N- l )>  (2.2) 

where 9; is the buoyancy jump across that interface and the Coriolis parameter 
equals fo +by. 

The potential vorticity in a generic layer is 

(j = 1, . . . , N ) .  Evaluation of the potential vorticity fields in the first and last layers 
requires knowledge of c0 and cN ; these are determined by the ‘horizontal ’ boundary 
conditions, discussed next. Two choices are possible for each one, a rigid or soft 
boundary. In  the first case the corresponding g is a given function of horizontal 
position, ~ ( x ) ,  which models topographic effects (including, of course, the possibility 
7 = 0 ) ,  whereas in the second one the boundary is free. Namely 

6 = 7 0 ( ~ ,  Y) (a:= 11, ( 2 . 4 ~ )  

or 9 ; c o  = f o $ l ( X , Y > t )  (a:=% (2.4b) 

for the top boundary, and 

= 7 N ( z ,  y) (e = N -  ( 2 . 5 ~ )  

or [ N  = -fO $N(x? y ,  t ,  ( e :=N)?  (2.5b) 

for the bottom one; the parameters a and 8 are here defined €or future use. 
For example, the system studied by Benzi et al. (1982) corresponds to  N = 1,  T~ = 0 

and the choices (2.4b) and (2.5a), whereas that discussed in Holm et al. (1985) has 
both boundaries rigid, ( 2 . 4 ~ )  and (2.5u), and the g; and H j  independent of j 
(otherwise, their equation (4A 1) is incorrect ; this corresponds to a uniform 
discretization of the case of constant Brunt-Vaisala profile). The free boundary 
conditions (2.46) and (2.5b) may be formally obtained by making $o = 0 and 

= 0 in (2.2). However, there is no need for the assumption of passive, 
motionless, layers ; e.g. the model in Benzi et al. (1982) may well represent a one-layer 
system, with a free surface and vacuum above it. 

The Kelvin circulations are defined by y;:= $df.uj, with the integral made along 
an,, which denotes each connected part of the boundary of the horizontal domain 9 
(e.g. each wall, in the case of a channel). It is possible to show that the state of the 
system is fully and uniquely determined, at any time, by q j (x ) , y ;  and the no-flow 
condition in each solid boundary, u j - n  = O , x ~ a a ,  where n is the outward unit 
vector: the 1C;.(x) can be inverted (in some cases, up to  the addition of an irrelevant 
constant) from that information. To be precise, the volume integral of q equals a 
linear combination of the y;, and thus these variables are not strictly independent ; 
this point will be considered further in the following section; meanwhile, state 
variables are taken as q and y. 
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The Hamiltonian structure of the problem is evidenced by the existence of a 
functional of state 2 and an appropriate Poisson bracket { . , . } such that the time 
derivative of any functional of state, d [ q ,  73 = Jd2XA(. . , x, t ) ,  is given by 

-={d,&'}+ d d  
dt 

The Hamiltonian and Poisson bracket for this system are 

where a and 8 are defined in (2.4) and (2.5), and 

where 3 ( a ,  b):= a, b,-a, b, is the Jacobian, and the functional derivatives of any 
state functional are defined by 

The Poisson bracket (2.8) does have the required properties, among which the harder 
to prove (but a crucial one) is the Jacobi identity, namely 

w, {V", W }  + {V,  {W, W} + { W ,  {%, V"I-1 = 0, (2.10) 

for any three admissible functionals of state 42, V" and W .  Mclntyre & Shepherd 
(1987) give a detailed derivation of the Jacobi identity for the one-layer problem, 
appropriate for readers - like myself ~ who have not mastered hard core math- 
ematics; that derivation yields to a careful definition of an admissible functional of 
state and is immediately generalizable to (2.8). 

The evolution equations, derived from (2.6), are the following: in the first place 
there is constancy of Kelvin circulations, dyJ/dt = 0, since (7;) X }  = 0 because 6/6, 
does not enter in the definition of the Poisson bracket (2.8). Secondly, the first 
variation of &' is 

N e 
f32 = d2x c Hj w j .  w j  + c f,($,+,- $ j )  K j  s, j-1 j=, 

integrating by parts the first term and rearranging the second sum (which amounts 
to an integration by parts in the vertical), SX/Sqj = -$i. On the other hand, it is 

(2.11) 

and consequently (2.6) gives 

a, Pi = {Qi? = mi, $A (2.12) 

which is the law of potential vorticity conservation. 
Equations (2.1)-(2.8) provide the generalization of those of Holm et al. (1985), for 

systems with non-uniform g' and H profiles and/or with free horizontal boundaries. t 
t The formulae in Holm et al. (1985) are not free from typographical errors, since their A!' and 

{. , .} do not yield the correct evolution equations. 
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Notice that & H j l . .  . in (2.8) and 8, H;’ in (2.11) have the correct limits, Jdz. .  . and 
S(z - z‘), respectively, when the vertically continuous case (with isopycnal horizontal 
boundaries) is obtained by making N +  co, Hj+O. (One could, if so desired, dispense 
with the H factors in both (2.9) and (2.11) changing H into H-l in (2.8).) 

A Casimir %‘ is a functional of state %‘such that 

(d,W} = 0, (2.13) 

for any admissible functional of state d (McIntyre & Shepherd 1987). The Poisson 
bracket (2.8) suggests the form 

(2.14) 

where the functions and the constants a, are arbitrary. Even though more 
complicated expressions can be written, this is general enough for all the applications 
in this paper. 

The zonal momentum functional A” is obtained by making it the generator of the 
transformation q,(g, y, t )  +- qi(x+ Sx, y,  t ) ,  in the sense 

(2.15) 

which demands S A x / S q j  = y and an x-symmetric horizontal boundary (so that 
-q(Sd/Sq), may be replaced by qz(dd/dq)). From this equation and (2.11) it is easy 
to derive azqj = {A”, qj}, but this local transformation does not seem to be enough 
to determine A” because it does not constrain the shape of a 9 .  

Meridional and angular momenta A g  and A” are similarly defined, as the 
generators of infinitesimal translations in y and rotations in the (z, y)-plane, 
respectively ; their existence requires a 9  to  be invariant under the corresponding 
spatial transformation. More generally, a function 3 (conserved or not) is said to be 
the generator of the infinitesimal transformation 8, d:= S g { 3 ,  d }  + O(Sg2), V d  ; the 
Hamiltonian is, for instance, the generator of infinitesimal time translations (2.6), 
whereas the Casimirs are the generator of no transformation (2.13). 

Using SAx/Sq, = y in (2.9), choosing S A x / S y  appropriately, and assuming an 
2-symmetric boundary, the explicit form 

(2.16) 

is obtained. Notice that the contribution of the Coriolis potential (proportional tot,) 
only matters for those cases in which a horizontal boundary is free, option (2.4b) 
and/or (2.5b), otherwise that term is trivially time-independent. Unlike the case of 
the primitive equations models (PEM), A” is but linear in the state variables; 
consequently 6 ” A ”  = 0 for n > 1. 

Existence and conservation of Ax are not equivalent properties : the first (second) 
one is related to invariance of the boundary (the Hamiltonian) under x-translations; 
indeed 

{Ax, 2) d2zto(ll.i a z 7 0 ( X ) - $ i v  ~ x ~ N ( X ) ) ,  (2.17) 

where the first (second) term on the right-hand side is absent if the top (bottom) 
boundary is free, i.e. if (2.4b) [(2.5b)] is chosen, instead of (2.4a) [(2.5a)]. 

I, 
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Therefore, if any of the horizontal boundaries is rigid and the corresponding 
topography T is x-dependent, a,T =l 0, then Ax is not conserved, &,Ax + 0, or, 
equivalently, X is not invariant under x-translations, 6"& + 0. I n  (2.7), X seems 
to be x-independent, because the right-hand side is written explicitly in terms of 
( u , v , ( ) ,  i.e. in terms of the streamfunction, instead of q and y :  in the case of a 
non-symmetric topography, the calculation of the field ?j from (q ,  y )  introduces an 
implicit x-dependence in the Hamiltonian. 

If each horizontal boundary is either free or has an x-independent topography, 
then {A", X }  = 0, i.c. A" is conserved and X is x-independent. This implies also a 
symmetry of the problem, namely, making an infinitesimal x-translation of the 
initial condition and then letting the system evolve is equivalent to performing both 
operations in reverse order. For an admissible functional of state, the difference 
between both infinitesimal operations is 

S"( 6, d) -a,( 6" d) = SX 6 t {A" ,  {d, &}} - 6x &{{A", d}, A?} ; 
the right-hand side is equal to 6x at{{&, Ax}, d}, by virtue of the Jacobi identity 
(2. lo), and therefore vanishes, in the case under consideration. 

An equation similar to (2.17) for A Y  or Aa involves also a contribution from the 
non-symmetric P term. Recall that existence of A Y  or Aa requires a 3  to have the 
corresponding symmetry ; for the conservation of either one it is also necessary not 
only that any topography be symmetric, but also that P = 0. 

I n  sum, the integrals of motion a t  our disposal are the energy d (which coincides 
with the Hamiltonian &), the Casimirs 97 and, if the boundary allows, the 
appropriate momenta A. A Casimir may sometimes be added to A? and/or A in 
order to build an integral of motion (pseudoenergy and/or pseudomomentum) which 
is quadratic to lowest order in the deviation from a given state, say, (q ,  y )  = ( Q ,  r). 
Namely, defining the first variation 6 9 ,  the second one 6 2 9 ,  etc., in terms of the 
total variation A 9 ,  for any functional of state F[q, y ]  in the form 

A 9  := %[Q + 6q, r+ 671 - S [ Q ,  r]  := 6 9  + ;a2% + ;a39  + . . . , (2.18) 

with P9 = 0(6q, Sy)", 

the quest is, given the basic state ( Q ,  I), to find 9 such that 6 9  = 0, V(Sq, Sy). 
For instance, in the P-plane the total enstrophy (variance of potential vorticity) is 

proportional to the pseudomomentum relative to  the resting ocean (Ripa 1981 a) ,  e.g. 
in the equivalent barotropic case without topography (Benzi et al. 1982) its density 
is &q-/3y)2 = h2-pM"-V* (PyV$) -+P2y2, i.e. - p  times the pseudomomentum, 
plus some trivially constant terms. In the f-plane, on the other hand, the enstrophy 
of any layer which is conserved is but a particular Casimir, namely, li;(q) = b2t& in 
(2.14) for the 8th layer. The limit P + O  is singular, in the sense that the connection 
between (Eulerian) integrals of motion and (Lagrangian) symmetries is partially lost 
(Ripa 1981 b ) .  

3. Nonlinear stability and instability conditions 
In this section I will derive sufficient stability (or necessary instability) conditions 

from the integrals of motion derived in the previous section. They apply to 
perturbations with an arbitrary structure. The cases of non-parallel and symmetric 
flows are treated separately. In both cases the law of pseudoenergy conservation is 
used, but in the second one the pseudomomentum is also available, raising the 
possibility of more powerful conditions. 
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If the state of the system is split, a t  any time, in the form q = Q + Sq and y = r+ Sy 
(where uppercase symbols denote variables in a (given) basic state), the quest is to 
find conditions on (Q, r )  that prevent the growth of some measure of the perturbation 
(Sq, Sy). Two definitions of stability will be used here (Holm et al. 1985 ; McIntyre & 
Shepherd 1987). Formal stability is based on the existence of a Lyapunov functional 
Y [ q , y ]  which is an integral of motion, Y[q,y] , , ,  = constant V(q,y),,,, and is an 
isolated minimum (or maximum) a t  this state, 69' = 0 and S2Y > 0 (or S2Y < 0) 
V(Sq, Sy) ; recall (2.18). Nonlinear stability, on the other hand, means that there exists 
a norm of the perturbation II(Sq, Sy)II which is bounded by a multiple of its original 
value. This, for instance, can be proved when the total variation of Y satisfies a 11 (Sq, 
Sy)))2 < JAY1 <AJ)(Sq,  6y)) I2 ,  for some positive constants a and A :  constancy of A Y  
implies 1 1  (Sq, Sy) 11, ,, 6 (A/a)iII (Sq, Sy)lIt-,. Nonlinear stability implies formal stab- 
ility, which in turn implies normal modes stability ; therefore, normal modes 
instability implies formal instability, which in turn implies normed instability. 

The set of basic states whose stability can be studied by this method is quite 
restricted. I n  the first place, constancy of 9' implies that i t  may be constructed from 
the energy €, all Casimirs W, and any conserved momentum M .  Secondly, the 
condition 6 9  = 0 implies that {Y ,d }  = 0 a t  (q , y )  = (&, r ) V d [ q , y ] ,  i.e. (Q,o is 
invariant under the infinitesimal transformation generated by 9'. Consequently, the 
basic state (&,I') must be either steady, Y = a+%,, or symmetric, Y = A+'ik;. 

3.1. Non-parallel steady flow 
If the basic state is steady, a, Y, = 0, (2.12) implies J( Y,  &) = 0, in each layer, i.e. 
!Pj = !P,(Qj) (for a discussion of multivalued functions !P(Q), see McIntyre & Shepherd 
1987) and there is, a t  most, one Casimir W, such that 6 9  = 0, with Y = a+%, (recall 
that  & = 2). The Lyapunov functional is, then, the pseudoenergy 

A Y  = (A-S)d?+(A-&)%, = constant. (3.1) 

Thc energy part of A Y  takes the form 

I 

( A - S ) €  = -  d2x CH,(VS$j)2+Cg;(S~,)z) =:[S$,S$], :s, c1 j = e  
(3.2) 

where a and 8 are defined in (2.4) and (2.5) ; the inner product [S$, S$] is here defined 
for future use. Notice that (A-S) € G $S26 ,  i.e. an€ = OVn > 2 ;  this is unlike the 
PEM case, for which a3€ + 0. Since S X / S q ,  = - Yj a t  (q ,  y )  = (Q, r),  the Casimir part 
of A Y  takes the form 

with 

- tu;(&,) (& l j )2  + o(@,)3, 
and (..):=J$d2x&H,. 

stability is then guaranteed if 
Unlike the case of primitive equations, S2€ is a priori positive definite; formal 

% O ,  
dQ3 

(3.5) 
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which implies SzWo positive definite. In  order to prove normed stability, ssume that 
there exist pairs of positive constants a, and A, such that 

0 < a, < u,(Q,,Sq,)/Sq; < A ,  (VSq, = lo ) ;  (3 .6)  
constancy of A 9  implies (Su; + ai Sq;), , < (Su; + A ,  Sq;),=,, and therefore defining 
( 1  (Sy, Sy) (1 := (Su; + u$Sy,2);, it then follows that (1 (Sq, $7) ( I t ,  d Max &/aj);  I( (Sq, 

Conditions (3 .5)  and (3 .6)  constitute Arnol’d’s first theorem for the general layered 
QGM of the last section ; they were first obtained by Benzi et al. (1982) for a one-layer 
case with a free surface and by Holm et al. (1985) for the multi-layer problem with 
rigid horizontal boundaries (and g; and H ,  independent of j). They have the same 
form as in the continuously stratified case with isopycnal horizontal boundaries 
(Swaters 1986; McIntyre & Shepherd 1987), in sharp contrast with the PEM, for 
which the layered and continuously stratified cases have quite different a priori 
stability properties (Ripa 1990). 

For the purposes of the following section, however, I need to derive Arnol’d’s 
second theorem, which guarantees stability in cases where dY/dQ is negative 
everywhere, instead of (3 .5) .  This might be possible in systems with free boundaries 
(Benzi et al. 1982) and/or for domains 3 that  are small enough in a t  least one 
dimension (McIntyre & Shepherd 1987) because, since 8+ is a (non-local) function of 
(Sq, a?), the wave energy 6’8 may be bounded by ISzWokb\ ( =  -S2Wo) so that the 
pseudoenergy 8’8 +S2Wo is negative definite. This is not possible with the PEM (e.g. 
the shallow-water equations) because in this case the potential vorticity field does 
not determine uniquely the velocity and mass fields : the null space in the derivation 
of (Su,6g) from Sq are the Poincark waves, which are explicitly filtered out in the 
quasi-geostrophic approximation (Ripa 1981 b ) .  

Arnol’d’s second theorem is usually derived assuming Sy = 0. Certainly, constancy 
of Kelvin circulations (2.14) implies that any Sy is time-independent, and a 
perturbation (6q, Sy) from (&, r )  is equivalent to  the perturbation (Sq, 0) from 
(&,T+Sy) .  However, it  ought to be proved that going from (&,r )  to (q ,y)  in two 
steps, passing through (&, r+Sy) ,  involves a well-defined norm; i.e. the stability 
theorem with Sy + 0 is unavoidable. This is done next : 

Let the perturbation streamfunction be split into the parts ‘induced ’ by Sq and Sy, 
the latter chosen to  have vanishing potential vorticity perturbation 

~ Y ) l l t = o .  

S?fhj(X,t) = Slp+S$’; (3.7) 
since &$ is a linear function of Sy and Sy, albeit a non-local one, this decomposition 
is well posed. This is done by first performing the expansions 

( 3 . 8 ~ )  

(3 .8b)  

where the Gj are the vertical normal modes (with eigenvalue pl ) ,  and the xs(x )  are the 
eigensolutions of the Helmholtz equation (with eigenvalue hi), defined in (A l ) ,  (A 2) 
and (A 4), respectively. I n  (3 .8b ) ,  Sf represents the Kelvin circulation perturbation 
due to the expansion in ( 3 . 8 a ) ;  this point will be clarified at the end of this section 
with the particular case of a channel. 

The first contribution to (3 .7)  is then 

(3 .9)  
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The parameter R,, equal to  (f:p,)-i,  is the Rossby deformation radius corresponding 
to the lth vertical mode. The second contribution is 

(3.10) 

where the C; are proportional to the B;, and the O;, and the @(x) are defined, in (A 5 ) ,  
in such a way that there is no potential vorticity perturbation associated to a@’. 

Now, the wave energy, the integral of (3 .2) ,  takes the form (A-6)& = [&,by, 

S $ y ]  + 2[&hq, S$y]  + 4hg] ; where [S$Y ,  S$y]  is time independent, by construction. 
The key property (proved in Appendix A),  that allows for the derivation of Arnol’d’s 
second theorem even with Sy + 0, is that the crossed term vanish identically, i.e. 

N G 

2[&hg, S$Y]:= d2x ( HI vq - vS@j + x g; acy dg) = 0. (3.11) 

Consequently, the only time-dependent term in the wave energy is [S$g,S@] = 
I-1 I-.. 

On the other hand, it is easy to prove that 
(3.1)-(3.4) it follows that if 

(3.12) 

then the pseudoenergy S 2 6  +#go - minus the trivial constant [ B @ y ,  S@Y]  - is negative 
definite and therefore the basic flow is formally stable; hi is the gravest eigenvalue 
of the Helmholtz equation (A 4) and R, is the deformation radius corresponding to 
the gravest vertical normal mode compatible with the boundary conditions. If a 
basic flow is unstable and the stability condition is violated by the h and R of just 
a few modes, then a growing perturbation must have a finite amplitude in those 
modes. 

Normed stability can be proved if there are two positive constants a and A ,  such 
that 

(3.13) 

this implies [ U - ( A : + R ; ~ ) - ~ ] ( S ~ ~ )  < a ( S q 2 ) - ( A - S ) &  < -2A(S+%,) < -2AV0 < 
A(Sq2). Consequently (Sq2), whose square root qualifies as a norm of the 
perturbation, is bounded, at any time, by its initial value times A / [ a -  (hi+R,2)-1].  

The stability conditions (3.12) and (3.13) reduce to  those of Arnol’d (1965, 1966) 
in the case of plane flow, Ro2 = 0; moreover, (3.12) becomes that of Benzi et al. (1982) 
for the ‘equivalent barotropic ’ case in the infinite plane hi = 0. Since condition (3.12) 
is expressed in terms of the eigenvalues of the gravest modes, i t  does not change if 
the model is improved by adding more and more layers, all the way up to  the 
continuously stratified case (with isopycnal horizontal boundaries) in which the 
conditions of Swaters (1986) and McIntyre & Shepherd (1987) are recovered. This 
property of the QGM is completely the opposite of the PEM, whose stability 
conditions change drastically with the vertical definition of the model (Ripa 1991 a) .  

(h:+R;2)-1 < a < -cI(QI, Sqj)/Sq; < A (VSqI + 0);  

3.2. Symmetric basic $ow 
If the Hamiltonian has some spatial symmetry (or, equivalently, the corresponding 
momentum is conserved), [A,&] = 0, then solutions of the formal stability 
conditions (3.5) or (3.12) must be themselves invariant under the transformation 
generated by A, in virtue of Andrews’ theorem (1984; see also Ripa 1991b). If 
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the basic flow is x-symmetric, then there is a t  most one Casimir Wl such that 
S(AX+Wl) = 0;  if i t  is axisymmetric, then there is a t  most one Casimir %, such that 
&(A"+%,) = 0. In either case, one may be tempted to use the pseudomomentum 
A+% in order to prove the stability of a basic flow that is symmetric but not 
necessarily steady; however such a state does not seem to exist for QGM.t 

Consider, therefore, a basic flow which is both steady and symmetric : the optimum 
choice for Y is an arbitrary combination of the pseudoenergy (€+Wo) and the 
pseudomomentum (A" + Wl or Au + W,), say 

Y = € - a A + W ,  (3.14) 

with an arbitrary a ,  where W = Wo-aWl or W = Wo-aW2, in the parallel or 
axisymmetric cases, respectively ( a  has dimensions of linear or angular velocity, in 
each case). Since S A x / S q ,  = y and S A " / S q ,  E -+(2 +y2) (:= all the formulae 
for the steady basic flow carry on, with the sole replacement Y,(s) --f Y,(s) +a$(s), in 
the parallel case, or Yi(s) + Yi(s) -&&.i(s)z, for the axisymmetric one, where Y,(Q,) 
and Rj(Qi) are the inverse functions of Qj(y) and Q j ( r ) ,  respectively. 

In the parallel case, then, formal stability is guaranteed when there is any value of 
a,  such that 

Uj-a  

Qi, Y 
< O  

(first theorem), or 

(3.15) 

(3.16) 

(second theorem), everywhere. $ Furthermore, normed stability requires the existence 
of two constants b and B ,  such that 

and either b > 0 (first theorem) or B < - (hi+R;2)-1 (second theorem). Lipps (1963) 
and Pedlosky (1964) obtained normal modes stability conditions which are 
equivalent to the a term in (3.15), i.c. using pseudomomentum conservation, in the 
notation of this paper. 

Instability conditions are that for any value of a both (3.15) and (3.16) must be 
violated somewhere ; a growing perturbation must have an appreciable amplitude 
where that violation takes place, in order to be able to make A Y  = 0. 

In  the following two sections, I will apply these results to two examples of quasi- 
geostrophic instability : the sinusoidal profile in a one-layer model with a free surface, 
and Phillips' (1954) two-layer problem with rigid horizontal boundaries ; these 
models represent the two following steps from the plane flow studied by Arnol'd 
(1965, 1966). Optimum application of the second theorem, with both pseudoenergy 
and pseudomomentum conservation (the arbitrariness of a is crucial), results in 
nonlinear stability conditions, which happen to  coincide with those for normal 
modes. Wave energy and Casimir integrals are calculated for that mode. 

t Unlike the case of PEM (Ripa 1 9 9 1 ~ ) .  This resembles the fact that a Rossby wave with 
vanishing zonal wavenumber (and thus symmetric) has also zero frequency (i.e. it is steady) ; this 
is not true for Poincark waves. 

$ For axisymmetric basic flows, (U-a) /&,  should be replaced by -(Q-a) r/Qr, where Q j ( r )  is 
the local angular velocity of the basic flow. 



Layered quasi-geostrophic instability 389 

In both cases, the horizontal domain 9 is chosen to be the channel y1 < y < y2, 
whose width is denoted by L:= y2-yl. The eigensolutions of the Helmholtz equation 
(A 4), used in the expansion of Sq, are of the form 

X M  cc exp (4 4 sin ( U Y  - Yl)) (3.18) 

with sin (Z,L) = 0 and h,2 = k,2 + 1," ; the gravest mode corresponds to k ,  = 0, I ,  = x / L ,  
i.e. A, = x / L .  Notice that there is a finite Sf owing to those xg with k,  = 0;  this must 
be subtracted from the actual value of Sy before doing the expansion (3.8b). The basis 
for S@y is of the form O;(x) cc cosh ( ( y - y v ) / R l ) ,  v = 1,2.  

4. Sinusoidal profile in the equivalent barotropic model 
Consider the system studied by Benzi et al. (1982) : one-layer model with a finite 

deformation radius R ;  this corresponds to N = 1 in (2.1)-(2.3), and the choices (2.4b) 
and (2 .5a) ,  with r1 = 0. Consequently q1 = V2@, - f ,  co /Hl  +py and [, = f o  kl/g', i.e. 
(omitting the unnecessary subscript) q = V2@-R-211/ with R2:= g'H/f t .  Formal 
stability conditions (3.15) and (3.16) for a parallel flow in this model read 

U-a 1 
p- U"+R-'U A; +R-2' 

< O  or > (4.1 a,  b) 

the term RP2U on the left-hand side shows that only the problem without free surface 
(RW2 = 0) has the property of 'Doppler shift ' (White 1982), which may be mistaken 
for a Galilean invariance. 

Consider the zonal flow 
U = U, sin (Ay) -PR2 ; (4.2) 

the term PR2 is chosen so that p effects cancel out in this problem. If  the basic flow 
is unstable, then both conditions (4.1~) (first theorem) and (4.1 b) (second theorem) 
must be violated, for any value of a. Violation of (4.1~) with la1 sufficiently large 
requires that p- U"+R-2U have a zero within the channel. Violation of (4.1 b) with 
a = -pR2 yields 

as a necessary condition of instability; I will show next that this condition is also 
sufficient for normal modes instability. Making 

AL > x, (4.3) 

Skq = E Re [ F ( y )  eilc(z-ct) 1 + W2), 
in the linearized potential vorticity equation, (a, - Ua,) Sq + SvQ, = 0, it is easily 
obtained 

( U - C )  (F"- (k2+R-')  F )  - (p- U"+R-2U) F = 0, (4.4) 

and the boundary conditions kF = 0 at y = y1 and y = yz; this equation has the same 
properties as that obtained for the Rayleigh problem in the plane without rotation, 
p = 0 = R-2 (Drazin & Howard 1966, pp. 7-9): The eigenvalue c at the onset of 
instability, i.e. for k2 near the critical value k:, is obtained looking for an 
eigenfunction of (4.4), belonging to the discrete set, with c equal to the value of U a t  
the point where p- U" -k R-2U ( = Q') vanishes : this is given by 

(4.5) kt = A2 - 1" F, = sin (lc(y-yl)), c,  = -pR2, C, 

where I,:= x / L .  Therefore the sinusoidal profile is unstable to normal modes ( k ,  real) 
if (4.3) is satisfied, which is the same condition as that found in the non-rotating case 
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(Drazin & Howard, 1966, p. 35). The second theorem, with the optimum value of a, 
is in this case not only sufficient but also necessary for formal stability; proof of 
nonlinear stability is in this case a trivial matter, because for this basic flow 
(A-S)(Wo-aWl)  e+32(Wo-aWl ) ,  a t  a = - pR2, and therefore ( - A Y ) i  can be used as 
a (time independent) norm of the perturbation; this corresponds to b 3 B in (3.17). 

Even though the deformation radius R does not appear in the instability condition 
(4.3), its value is important for the dynamics, as shown next. Following Drazin & 
Howard (1966, pp. 12--13) integrate F:(y)F(y)-F,(y)F”(y) between y = y1 and 
y = y,, and then make k2 TkE, to obtain 

where P denotes the Cauchy principal value of the integral, and the minus (plus) sign 
corresponds to Im (c) positive (negative). In the case of the sine profile (4.2), using 
(4.5) in (4.6) and assuming y1 = -yz, for simplicity, 

2 ~ ( , 4 + R - ~ ) ) I m ( c ) J  - .4LIUol (kE-k2) as k21, k: (4.7) 

is obtained; a finite deformation radius produces a weaker growth rate, for 
everything else fixed, than the case of the plane flow, RP2 = 0. 

Let me finish this section by presenting the value of the pseudoenergy and 
pseudomomentum integrals. At the onset of instability, k2 = kE -0, the wave kinetic 
and potential energies and the wave Casimirs are found to be 

K (A2,R-’, - A 2 - R P 2 ) ;  

consequently, the wave pseudoenergy vanishes, S2(b+Wo) = 0, as it should for a 
growing or decaying perturbation. The integral of S2(Wo - ay) is calculated, with the 
eigensolution in (4.5), for a = -pR2 so as to  cancel the singularity a t  y = 0. However, 
for k2 < k: it is S2‘ik; = 0, because the wave pseudomomentum must also vanish, and 
S2A = 0 for quasi-geostrophic models. 

5. Phillips’ problem 
In  this section, I will consider a two-layer system, with p = 0, and with rigid and 

horizontal boundaries, i.e. N = 2 in (2.1)-(2.3) and the choices ( 2 . 4 ~ )  and (2.5a), with 

currents Ul and U ,  in each layer ; this is an example of baroclinic instability, whereas 
that of the last section was barotropic. This model was first developed by Phillips’ 
(1951, 1954); Gill, Green & Simmons (1974) introduced the improvements of /? + 0, 
topography, and unequal thicknesses (only the last one, H ,  + H,,  is made here). 

The potential vorticity for the basic state is given by Q, = y( U, - U3+) f i/g’H,, j = 
1,2. Formal stability in the form of Arnol’d’s first theorem (pseudoenergy positive 
definite) cannot be proved, because (3.15) is violated for any a; in order to overcome 
this difficulty Henrotay (1983) included dissipation and applied the Lyapunov 
method in the form d[S2(b-aWl)]/dt < 0, i.e. using only the sign-definite terms of 
pseudoenergy and pseudomomentum. Let me instead try for Arnol’d’s second 
theorem. 

7 = 7  - , = - 0. I will assume, furthermore, that the basic flow is parallel, with constant 
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The gravest mode corresponds to A, = n/L ,  for the horizontal mode (3.18), and 
p0 = 0 (R i2  = 0) ,  for the vertical one (barotropic mode). Equation (3.16) then 
reads (U-a) /&,  > L2/7c2, for some a and j = 1,2, which implies 

In  order for an a satisfying these inequalities to  exist, it is necessary that the left- 
hand side be larger than the right-hand side, namely 

g’H,H,/(H,+H,) > ( f 0 L m 2  (5.1) 

(i.e. L / n  must be smaller than the internal deformation radius). This is the stability 
condition derived from Arnol’d’s second theorem, using the same bound for both 
coefficients (U-a) /&,  in the wave Casimir; it is shown next that (5.1) is too 
restrictive as a stability condition (unless H ,  = H J .  

In  order to prove Arnol’d’s second theorem in its strongest form, let me start by 
making the expansion 

for a general potential vorticity perturbation. Doing likewise for 8$j’(x, t )  and using 
(2.1)-(2.3), it is found that 

(The superscript s in and K, and the arguments of 6 and x, are omitted for 
simplicity). Using this in the energy part of the Lyapunov functional 9, (3.14), gives 

the corresponding Casimir part is 

U2-a 

(5.3) 

(5.4) 

Notice that not only is the wave energy exactly quadratic, (A-6) d = +a2& (which is 
a peculiarity of the quasi-geostrophic models), but, in this problem, so is the wave 
Casimir, (A-8) % = +S2%‘, because (U-a)/&,  is constant in each layer. Therefore, 
ASP is exactly given by terms of the form x Mj E: E,, where each 2 x 2 matrix M, 
is a function of A:. 

The ‘orthodox’ application of the second theorem corresponds to finding a 
common bound to both terms in (5.4) ; instead, necessary and sufficient condition for x Mtj Ef E5 to be negative definite are Tr (M,) < 0 and Det (M,) > 0. This need only 
be required for the gravest mode (lowest A;) ,  because the contribution of higher 
modes to (A-8)& is smaller relative to their contribution to  (A-8)%, i.e. the 
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TABLE 1. Contribution of a single normal mode t o  the wave kinetic & potential energies and t o  the 
wave Casimir ; the sum of the three terms (pseudoenergy ~ a pseudomomentum) is an integral of 
motion. 

derivative of each term in series (5.3) with respect to K ,  or K, is negative definite. The 
matrix M, calculated from the sum of (5.3) and (5.4), gives 

1 - 2 K 1  K ,  
Tr (M) = 

2 K 1  K2 + K1 + K z ’  

A sufficient condition for formal stability, Tr (M) < 0 and Det (M) > 0, is therefore 
obtained using that value ofci that makes the expression between braces vanish : this 
condition is simply K~ K, > 1 ; using the values of K~ (5 .2 )  for the gravest mode, 
k = 0 and 1 = R / L ,  it follows that 

g’(H,H,) i  > Z ( f & / X ) Z  (5.5) 

is a sufficient condition for nonlinear, or normed, stability. This condition is more 
powerful than (5.1) (which corresponds to demanding K;’ + ~2~ < 2, instead of K~ K~ 

> i ) ,  because i t  assures the stability of more systems. Notice that in order to obtain 
(5.1) and (5.5) it was crucial to be able to use an arbitrary a. 

I will now calculate the normal modes (further details are given in Appendix B). 
Using 

in the equations of motion, (2.12), results in the eigenvalue 

$. 3 = -Ujy+eRe [$jeik(s-et)]sin (Zy)+O(e2), (5.6) 

3 (5.7) 
K1(l  + K Z )  ul + K 2 (  1 + K 1 )  u, f (ul - u,) 

C =  
K~ + K ,  + Z K ,  K,  

and the eigenvector 

(5.9) r z  - where Y - K 1 K 2 ( K 2 -  1). 

Short enough modes cannot grow, i.e. ( k 2 + Z 2 ) g ’ ( H ,  H , ) ;  > Zft * Im (c) = 0, in 
agreement with (5.5) ; as pointed out above, nonlinear stability implies stability to 
normal modes disturbances. 

Table 1 shows the kinetic and potential wave energy, cY2E;, and cY26,, and the wave 
Casimir, all calculated to O(e2) and for the particular case H ,  = H,, for simplicity 
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(the expressions for the general case H ,  =I= H,, are given in Appendix B). Notice that 
for just one growing, or decaying, normal mode, Im ( k c )  =k 0, it is S2Y = 0, because 
it is both S2Y = constant and S2Y cc exp [2 Im (kc )  t ] ;  the 'lines' 6,Y = 0 in phase 
space (which represent a compensation between the wave energy, S 2 6 ,  and the wave 
Casimir, 6''ik0 - aSZ'ikl) are the stable and unstable manifolds of linearized dynamics. 
Of course, a pair of growing and decaying normal modes, with opposite values of Im 
( k c ) ,  will have a finite contribution 6 ' 9  = constant + 0 (Held 1985), proportional to  
the product of both amplitudes, indicating that ( q , y )  = ( Q , q  is a 'saddle point' in 
phase space. 

In  writing table 1 from equations (B 2)-(B 6), a common factor K ' I ~ - K I  was 
eliminated. For the more general case, H ,  $: H,, from analysis of expression (B 4), 
which gives S 2 Y  for neutral modes ( K , K ,  > l ) ,  it is seen that 6'9' might have either 
sign, but tends to zero as K ,  K,  f 1. For instance, 

SzY = ~ K , K ~ ( K ~ K , - ~ ) ( K ~ + K ~ - K ~ - K ~  

f s ( K 1  - K f )  [2K1 K Z (  1 - K1 - K Z )  + K1 + K2]  

for the particular value 01 = ;( U, + U,), and K~ K~ < 1 ; as explained before, 
K, K ,  > 1 + d 2 Y  = 0. It is clear that  for each of the stable perturbations, S 2 Y  + 0 
as the neutral stability curve is approached (i.e. K ,  K~ 4 1).  

Sakai (1989) studied the case H ,  = H ,  and pointed out that  if one calculates 
eigensolutions for each layer, decoupled from the other, their pseudomomenta have 
opposite signs and their frequencies coincide inside the instability region of the 
coupled problem ; he calls this a 'resonance ' phenomenon. For the case of arbitrary 
depths this is found to occur, equating both expressions between braces in (B l),  a t  
K ,  K~ = a, which is within the instability region ( K ,  K ,  < 1). Sakai's method is clearly 
useful for the construction of a complete basis (for the expansion of the perturbation) 
and for a priori aiming to the instability region ; however, I consider that there is an 
overuse of the word resonance, since both components are not always physically 
meaningful ones, but rather mathematical constructs. It is also interesting to point 
out that  the pseudoenergies of the decoupled solutions need not have opposite signs. 

6. Conclusions 

basic state and perturbation fields, 
The total variation of any functional 9[4] may be considered a functional of the 

A 3  = A 3 [ @ ,  841; 

that is also true for every term in the expansion of A (S,$+Y2, etc.). For QGM, @ may 
be taken as the potential vorticity q, because the contribution of Sy to  the 
pseudoenergy and pseudomomentum integrals is orthogonal to that due to 6q, as 
shown in Appendix A. If now 84 is expanded as 

64 - S@(% + 6#(2)€2 + S$(3)€3 + . . * 

S9[@, 8@(1)] = 0, 

Sj[@, S4("] +$P9[@, 84'1'1 = 0, 

as e+O, and 9 is an integral of motion, A 9  = 0, it follows 

etc. The first equation is usually a trivial one ; e.g. for a parallel basic state, a, @ = 0, 
and a non-symmetric perturbation, 84 cc eikx with k $: 0, 8 3  vanishes identically. 
The second equation gives a balance between the rate of change of the 'wave' 
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contribution to the integral of motion, $ S 2 9 [ @ ,  S$(’)], and that due to the rectification 
of the ‘mean flow ’, W[@, SqS2)]. I n  particular, from pseudoenergy conservation it is 

Sd[rP, S p ]  = -&o[@, S p ]  = -$SZd[@,  S$(’)] = ;s2@op, S p ]  ; 

these equations may, of course, be proved directly from the evolution equations of 
S&’) and SqP) (and for a general, not necessarily parallel, basic flow). Finally, for the 
pseudomomentum (in the case of a symmetric basic flow) it is similarly found that 

S&[@, S p ]  = -&&[@, S p ) ]  = -$S2&[@, S$‘1’] = $S“][@, S p ] .  

For QGM it  is S 2 A  = 0, and therefore the rate of change of the other three integrals 
vanish identically, and wave energy is positive definite. Consequently, the induced 
variation of mean flow energy is negative, whereas wave and mean flow momenta are 
both exactly zero; there is no net momentum induced by the waves. These are 
peculiarities of the QGM which, in general, are not found for those models based in 
the primitive equations (e.g. Kelvin-Helmholtz instability is an example where wave 
energy vanishes). 

From the point of view of instability theory, quasi-geostrophic theory belongs 
(together with plane flow) to the class of models in which more information can be 
extracted from the integrals of motion, namely, conditions for nonlinear or normed 
stability and Arnol’d’s second theorem. In contrast, primitive equations models a t  
most can long for formal stability conditions in the sense of Arnol’d’s first theorem, 
if layered in the vertical, or just normal modes conditions, if continuously stratified 
(Ripa 1990, 1991~) .  

The reason why it is possible here to pose the convexity estimates for the 
pseudoenergy integral, in order to prove normed stability, is that (A -8) B is exactly 
quadratic in the perturbation, (A-S) 6‘ = $SV, whilst (A-S)Vo, which may have 
higher-order contributions ( P W 0  f 0 for some n larger than two), is a functional of a 
single field, namely, Sq. On the contrary, it is not possible to establish nonlinear 
stability for the shallow-water equations (or, in general, primitive equation layered 
models), because S36 does not vanish, and furthermore is a functional of three 
independent fields, Su, Sv and Sh. Similar arguments follow for the pseudomomentum. 

Probably the most striking difference between quasi-geostrophic and primitive 
equation models is that in the former it may be possible to prove stability in cases 
where S2Wo (or S2Vl) is not positive definite (Arnol’d’s second theorem), choosing a 
value of a such that S2‘iko - a62Wl is negative definite and larger in magnitude than 
S2B-aS2A. This is done here for Phillips’ baroclinic instability problem (without ,8 
or topographic effects) using, furthermore, the total variations of the integrals, not 
just the second-order one. It is thereby shown that 

g’W1 ’ 2 ( f o L / x ) 2  

is indeed a condition for nonlinear quasi-geostrophic stability, for any shear. In 
contrast, the corresponding ageostrophic one ( f  = 0 ) ,  i.e. Kelvin-Helmholtz formal 
stability condition (Ripa 1990), 

9’(Hl+H,) ’ (u,-u2)2? 
does depend on the value of the shear, and has a completely different meaning: it 
guarantees that the wave energy be positive definite. 

A similar analysis is done for a sinusoidal flow in the equivalent barotropic model : 
Arnol’d’s second theorem gives 

AL < x 
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(where A is the wavenumber of the basic flow), which again is found to be not only 
sufficient, but also necessary for stability. This condition happens to be the same as 
in the case without rotation: the main effect of a non-vanishing value off,, is a 
weakening of the growth rate. It is sometimes stated that the Coriolis force has a 
‘stabilizing’ effect in planetary flows; it might be argued that this weakening of the 
growth rate is an example of such purported effect. However, in Phillips’ problem, 
discussed above, the effect is the opposite : instability for 1 f o l  above a certain threshold 
(this is also appreciated in the fully ageostrophic calculation of Sakai 1989). Coriolis 
effects may be ‘ stabilizing ’ or ‘destabilizing ’ depending upon the example ; there is 
no general principle. 

Yet another way to analyse the differences between quasi-geostrophic and 
primitive equations models is to obtain, in both cases, the continuously stratified 
model as the limit of a layered case, as N +  co and H j  + 0. For primitive equations 
models, as the number of layers increases it is harder and harder to assure that the 
wave energy be positive definite (Ripa 1991a), to the point that there is no formal 
stability (let alone normed stability) condition in the continuously stratified case 
(Ripa 1990). For quasi-geostrophic models, on the other hand, wave energy is a priori 
positive definite, and there are no major difficulties with the continuously stratified 
limit. In fact, all the results of $52 and 3 (Hamiltonian, Poisson bracket and the 
various stability conditions) are easily generalizable to the continuous case (McIntyre 
& Shepherd 1987), with isopycnal top and bottom boundaries, by simply replacing c H j  . . . for dz . . . (non-isopycnal boundaries require the introduction of additional 
state variables; Holm 1986). 

This work was funded by MQxico’s Secretaria de ProgramaciBn y Presupuesto 
through CICESE’s normal funding. Pepe Ochoa and Ted Shepherd were very helpful 
with corrections to the manuscript. 

Appendix A. Expansion basis for Arnol’d’s second theorem 
The vertical normal modes are defined by (Ripa 

Gj+l-Gj=pu,g;Fi  (j= l , . .  

with the end conditions, corresponding to rigid or 
(2 .5 ) ,  

free boundaries, as in (2.4) and 

pt Fk = 0 or pl gh Fk = Gl,, 

pl F h  = 0 or pl gX F h  = G h .  

From (A 1) it  is easy to obtain 

Each of the first and second terms on the right-hand side either vanishes or is 
incorporated into the last summation, corresponding to the choice of a rigid (left) or 
free (right) boundary condition in (A 2). If both boundaries are rigid, left-most 
possibility in (A 2), then the gravest (barotropic) mode corresponds t o p  2 0 and does 
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not contribute to  the potential energy. All other (baroclinic) modes have ,u > 0. For 
any choice of end conditions in (A 2 ) ,  it is 

where a and & are defined in (2 .4)  and (2 .5) .  There are N eigensolutions which form 
a complete and orthogonal basis for the expansion of Sq and Sy, and thus of 8~ (as 
done in (3.8)-(3.10)). 

The ~ ( x ) ,  used in (3.8), are the eigensolutions of the Helmholtz equation 

(VZ++h,2)x,(x) = 0 @€a), 1 
(A 4) 

x , (x )  = 0 (x~aa) ,J  
from which (3.9) follows. Finally, the 8(x), used in (3.10) are the solutions of 

where Rr2:= ,ul f i ; the differential equation was chosen so that there is no potential 
vorticity perturbation associated with Sky. 

The following orthogonality conditions between horizontal structure functions, 

are easily obtained from (A 4) and (A 5). 
The key ingredient to derive Amol’d’s second theorem with Sy + 0 is the 

orthogonality (3.11) of SI,P and S$y ,  in the wave energy sense. I n  order to prove it,  
first of all notice that if &,hj .= E M l  Gj then Sc, = C f,,,ulMl F:, by virtue of definition 
(2 .2)  and (A 1) .  Then notice that in the vertical sums of (3 .2) ,  crossed terms 
corresponding to different vertical modes vanish identically, because of the 
orthogonality conditions (A 3). Therefore, the horizontal integral of (3.11) reduces, 
after using (A 3b), to that of V@.Vx,*+f~,u, ex,*, which vanishes because of (A 6b). 

Appendix B. Normal modes of Phillips’ problem 
Substitution of (5 .6)  in (2.12) results in the O(e) linearized equations 

( U - c ) $ + Q v $  = 0, in each layer, i.e. the two equations 

[2Kj( uj - C )  -k u3-j - C] $j - (uj - C )  G3-j = 0, (B 1 )  

where the K are given in (5.2). Requiring the determinant of this homogeneous 
system to vanish, the eigenvalue is obtained (5.7).  The eigenvector is of the form 

$1 0C c1[2K2( uz - C )  -k u1- C ]  -k cz( u1 -C), 
iZ OC cz[2K1 ( ul - C )  -k uz - C] -k cl( u2 - C ) ,  
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where the Cj are arbitrary; choosing them as C, a K ~ - ~  results in the expression (5.8). 
Calculating the wave energies and Casimir for just one normal mode results in the 
following : 

For K ~ K ~  > 1 (neutral modes) it is 

a 2 8 k  = 2K1 K2[K1 K2(K1 + K2 - 2 )  & z ( K 1  - K 2 ) ] ,  

a2& p = 1 K  2 (  1 + K 2 - 2 K 1 K 2 ) 2 >  

s2% = ( 2 K 1  K2 - 1 f 2C”(U1 + u2-2a)/(ul - u2)) @ 

(B 2 a )  

(B 2b)  

(B 3) 

for the kinetic and potential wave energies, and 

for the wave Casimir, where 0 = K~ K~ - ( K ~  K~ -4) ( K ;  + K: )  T E(K? - K: ) ,  and E is given 
by (5.9). Equation (B 3) with a = 0 gives a2VOk6, i.e. the Casimir contribution to  the 
pseudoenergy ; t,he term proportional to a, on the other hand, gives S2Wl, the Casimir 
contribution to the pseudomomentum. Finally, adding (B 2 )  and (B 3), the wave 
contribution to  the general second-order integral of motion ‘pseudoenergy - a 
pseudomomentum ’ is obtained 

S2Y = 2 K 1  K2(K l  K2 - 1 )  (K1  + K2 - K i  - K : )  

E( (K1 - K 2 )  ( 2 K 1  K2(  1 -K1  - K 2 )  -k K1 + K 2 )  -k 2(  ul -k u2 - k) / (  ul - u2) 0). (B 4) 

The corresponding expressions for just one growing, or decaying, normal mode 

(B 5) 

(B 6) 

( K ~ K ~  < 1 )  are 

for the wave kinetic energy, (B 2 b )  for the potential one, and 

a28;, = 2 K 1  K2(K1 + K2 - 2K1 K 2 ) ,  

S2% = 2 K 2  1 K2 2 -1 2(K1+K2)2 .  

Addition of (B 2 b ) ,  (B 5) and (B 6) gives a2Y = 0, as i t  should, because it is both time 
independent and proportional to exp [2 Im ( k c )  t ] .  

The expressions in table 1 ,  are those in this Appendix for the particular case 
K~ = K ~ ,  without the common factor K211 - K I .  
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